Normalized Bernstein polynomials in solving space-time fractional diffusion equation
نویسندگان
چکیده
*Correspondence: [email protected] Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran Abstract In this paper, we solve a time-space fractional diffusion equation. Our methods are based on normalized Bernstein polynomials. For the space domain, we use a set of normalized Bernstein polynomials and for the time domain, which is a semi-infinite domain, we offer an algebraic map to make the rational normalized Bernstein functions. This study uses Galerkin and collocation methods. The integrals in the Galerkin method are established with Chebyshev interpolation. We implemented the proposed methods for some examples that are presented to demonstrate the theoretical results. To confirm the accuracy, error analysis is carried out.
منابع مشابه
A numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملA New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation
In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...
متن کاملNew operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملOn a modication of the Chebyshev collocation method for solving fractional diffiusion equation
In this article a modification of the Chebyshev collocation method is applied to the solution of space fractional differential equations.The fractional derivative is considered in the Caputo sense.The finite difference scheme and Chebyshev collocation method are used .The numerical results obtained by this way have been compared with other methods.The results show the reliability and efficiency...
متن کاملNumerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials
The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...
متن کامل